Title
Numerical computation of multivariate normal and multivariate-t probabilities over convex regions)?
Keywords
Convex region; Integral equation; Monte Carlo; Multiple comparisons; Multivariate normal integral; Multivariate-t integral
Abstract
A methodology has been developed and Fortran 90 programs have been written to evaluate multivariate normal and multivariate-t integrals over convex regions. The Cholesky transformation is used to transform the integrand into a product of standard normal or spherically symmetric t variables. For any random direction from the origin, an unbiased estimate of the value of the integral is Pr[X2 ≥ r2] (multivariate normal) or Pr[F ≥ r2/k] (multivariate-t), where r is the distance from the origin to the boundary in a randomly chosen direction, and k is the dimension of the integral. Two Fortran 90 programs have been written. MVI uses the average of many estimates. MVIB uses a binning procedure to obtain an empirical distribution of the distance from the origin to the boundary. Gauss-Legendre quadrature is then used to estimate the value of the integral. The running time for MVIB is modestly smaller than that for MVI. However, in solving certain integral equations (e.g., using an iterative procedure to find the percentage point of a statistic), using MVIB usually requires no Monte Carlo sampling after the first iteration, and is considerably more efficient. MVIB and MVI are highly efficient for the evaluation of integrals whose value is large. “Naive” Monte Carlo (MC) may be competitive with MVI or MVIB only if the value of the probability integral is small or the shape of the region is “extreme”. © 1999 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.
Publication Date
1-1-1998
Publication Title
Journal of Computational and Graphical Statistics
Volume
7
Issue
4
Number of Pages
529-544
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1080/10618600.1998.10474793
Copyright Status
Unknown
Socpus ID
0032286933 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0032286933
STARS Citation
Somerville, Paul N., "Numerical computation of multivariate normal and multivariate-t probabilities over convex regions)?" (1998). Scopus Export 1990s. 3300.
https://stars.library.ucf.edu/scopus1990/3300