Title
Judgement In Learning-Curve Forecasting: A Laboratory Study
Keywords
Judgemental models; Learning curves; Statistical models
Abstract
This study investigates whether human judgement can be of value to users of industrial learning curves, either alone or in conjunction with statistical models. In a laboratory setting, it compares the forecast accuracy of a statistical model and judgemental forecasts, contingent on three factors: the amount of data available prior to forecasting, the forecasting horizon, and the availability of a decision aid (projections from a fitted learning curve). The results indicate that human judgement was better than the curve forecasts overall. Despite their lack of field experience with learning curve use, 52 of the 79 subjects outperformed the curve on the set of 120 forecasts, based on mean absolute percentage error. Human performance was statistically superior to the model when few data points were available and when forecasting further into the future. These results indicate substantial potential for human judgement to improve predictive accuracy in the industrial learning-curve context. Copyright © 1999 John Wiley & Sons, Ltd.
Publication Date
1-1-1999
Publication Title
Journal of Forecasting
Volume
18
Issue
1
Number of Pages
39-57
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1002/(SICI)1099-131X(199901)18:1<39::AID-FOR683>3.0.CO;2-N
Copyright Status
Unknown
Socpus ID
0242567787 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0242567787
STARS Citation
Bailey, Charles D. and Gupta, Sanjay, "Judgement In Learning-Curve Forecasting: A Laboratory Study" (1999). Scopus Export 1990s. 3843.
https://stars.library.ucf.edu/scopus1990/3843