Title

Rockafellar'S Celebrated Theorem Based On A -Maximal Monotonicity Design

Keywords

A-maximal monotone mapping; Generalized resolvent operator; Inclusion problems; Maximal monotone mapping

Abstract

A generalization to Rockafellar's theorem (1976) in the context of approximating a solution to a general inclusion problem involving a set-valued A-maximal monotone mapping using the proximal point algorithm in a Hilbert space setting is presented. Although there exists a vast literature on this theorem, most of the studies are focused on just relaxing the proximal point algorithm and applying to the inclusion problems. The general framework for A-maximal monotonicity (also referred to as the A-monotonicity framework in literature) generalizes the general theory of set-valued maximal monotone mappings, including the H-maximal monotonicity (also referred to as H-monotonicity). © 2007 Elsevier Ltd. All rights reserved.

Publication Date

4-1-2008

Publication Title

Applied Mathematics Letters

Volume

21

Issue

4

Number of Pages

355-360

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1016/j.aml.2007.05.004

Socpus ID

40149083734 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/40149083734

This document is currently not available here.

Share

COinS