Title
Best Polynomial Approximation In Sobolev-Laguerre And Sobolev-Legendre Spaces
Keywords
Best polynomial approximation; Orthogonal polynomials
Abstract
We investigate limiting behavior as γ tends to ∞ of the best polynomial approximations in the Sobolev-Laguerre space WN,2([0, ∞); e-x) and the Sobolev-Legendre space WN,2([-1, 1]) with respect to the Sobolev-Laguerre inner product φ(f, g) := ∑k=0N-1ak ∫0∞ f(k)(x)g(k)(x)e-xdx + γ ∫0∞ f(N)(x)g(N)(x)e-xdx and with respect to the Sobolev-Legendre inner product φ1(f, g) := ∑k=0N-1ak ∫-11 f(k)(x)g(k)(x)dx + γ ∫-11 f(N)(x)g(N)(x)dx respectively, where a0 = 1, ak ≥ 0, 1 ≤ k ≤ N - 1, γ > 0, and N ≥ l is an integer.
Publication Date
12-1-2002
Publication Title
Constructive Approximation
Volume
18
Issue
4
Number of Pages
551-568
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1007/s00365-001-0022-8
Copyright Status
Unknown
Socpus ID
0035982985 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0035982985
STARS Citation
Kim, D. H.; Kim, S. H.; and Kwon, K. H., "Best Polynomial Approximation In Sobolev-Laguerre And Sobolev-Legendre Spaces" (2002). Scopus Export 2000s. 2398.
https://stars.library.ucf.edu/scopus2000/2398