Title

Solitons In Coupled Ablowitz-Ladik Chains

Abstract

A model of two coupled Ablowitz-Ladik (AL) lattices is introduced. While the system as a whole is not integrable, it admits reduction to the integrable AL model for symmetric states. Stability and evolution of symmetric solitons are studied in detail analytically (by means of a variational approximation) and numerically. It is found that there exists a finite interval of positive values of the coupling constant in which the symmetric soliton is stable, provided that its mass is below a threshold value. Evolution of the unstable symmetric soliton is further studied by means of direct simulations. It is found that the unstable soliton breaks up and decays into radiation, or splits into two counter-propagating asymmetric solitons, or evolves into an asymmetric pulse, depending on the coupling coefficient and the mass of the initial soliton. © 2002 Elsevier Science B.V. All rights reserved.

Publication Date

9-23-2002

Publication Title

Physics Letters, Section A: General, Atomic and Solid State Physics

Volume

302

Issue

4

Number of Pages

163-170

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1016/S0375-9601(02)01140-4

Socpus ID

0037163844 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/0037163844

This document is currently not available here.

Share

COinS