Title
Solitons In Coupled Ablowitz-Ladik Chains
Abstract
A model of two coupled Ablowitz-Ladik (AL) lattices is introduced. While the system as a whole is not integrable, it admits reduction to the integrable AL model for symmetric states. Stability and evolution of symmetric solitons are studied in detail analytically (by means of a variational approximation) and numerically. It is found that there exists a finite interval of positive values of the coupling constant in which the symmetric soliton is stable, provided that its mass is below a threshold value. Evolution of the unstable symmetric soliton is further studied by means of direct simulations. It is found that the unstable soliton breaks up and decays into radiation, or splits into two counter-propagating asymmetric solitons, or evolves into an asymmetric pulse, depending on the coupling coefficient and the mass of the initial soliton. © 2002 Elsevier Science B.V. All rights reserved.
Publication Date
9-23-2002
Publication Title
Physics Letters, Section A: General, Atomic and Solid State Physics
Volume
302
Issue
4
Number of Pages
163-170
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1016/S0375-9601(02)01140-4
Copyright Status
Unknown
Socpus ID
0037163844 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0037163844
STARS Citation
Malomed, Boris A. and Yang, Jianke, "Solitons In Coupled Ablowitz-Ladik Chains" (2002). Scopus Export 2000s. 2450.
https://stars.library.ucf.edu/scopus2000/2450