Title
Evolution Of Solitary-Wave Solution Of The Perturbed Regularized Long-Wave Equation
Abstract
The evolution of the solitary-wave solution of the regularized long-wave (RLW) equation is considered. The perturbation is of the type that adds energy to the solitary wave. The perturbed solitary wave does not conserve "mass". So, a tail is introduced of which the near-tail portion remedies this "mass" defect, while the far-tail portion exhibits a plateau structure. © 2002 Elsevier Science Ltd. All rights reserved.
Publication Date
4-1-2002
Publication Title
Chaos, Solitons and Fractals
Volume
13
Issue
5
Number of Pages
1129-1136
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1016/S0960-0779(01)00120-5
Copyright Status
Unknown
Socpus ID
0036526006 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/0036526006
STARS Citation
Shivamoggi, B. K. and Rollins, D. K., "Evolution Of Solitary-Wave Solution Of The Perturbed Regularized Long-Wave Equation" (2002). Scopus Export 2000s. 2604.
https://stars.library.ucf.edu/scopus2000/2604