Title
An Adaptive Distance Computation Technique For Image Retrieval Systems
Keywords
Content-based image retrieval; Dynamic distance metric; Query-by-example; Range distance
Abstract
For more than a decade query-by-one-example (QBE) has been a popular query system for content-based image retrieval (CBIR). However, recent research has shown that a single image is not sufficient to form its semantics or concept of the intended query. Searching concept "car," for instance, one might need many examples of car images in various colors. The color feature is then understood as a non-factor in the distance metric. In our approach, users can query by using groups of query images. There are three possible groups: relevant (positive), irrelevant (negative) or neutral groups. We define the range for each feature within these groups of query images, and use them to adjust the weights of the features. As a result, some features may be cancelled out from the similarity computation. The measure then becomes a dynamic metric for image retrieval. Our approach achieves a higher degree of precision and recall and, at the same time, significantly reduces the time complexity of matching. The proposed approach is tested against the ImageGrouper method. The results show that this approach is an effective and efficient technique for QBE. Copyright 2005 ACM.
Publication Date
12-1-2005
Publication Title
Proceedings of the ACM Symposium on Applied Computing
Volume
2
Number of Pages
1195-1199
Document Type
Article; Proceedings Paper
Personal Identifier
scopus
DOI Link
https://doi.org/10.1145/1066677.1066948
Copyright Status
Unknown
Socpus ID
33644532517 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/33644532517
STARS Citation
Hiransakolwong, Nualsawat; Hua, Kien A.; and Koompairojn, Soontharee, "An Adaptive Distance Computation Technique For Image Retrieval Systems" (2005). Scopus Export 2000s. 3380.
https://stars.library.ucf.edu/scopus2000/3380