Title
Dispersion Control With A Fourier-Domain Optical Delay Line In A Fiber-Optic Imaging Interferometer
Abstract
Recently, Fourier-domain (FD) optical delay lines (ODLs) were introduced for high-speed scanning and dispersion compensation in imaging interferometry. We investigate the effect of first- and second-order dispersion on the photocurrent signal associated with an optical coherence imaging system implemented with a single-mode fiber, a superluminescent diode centered at 950 nm ± 35 nm, a FD ODL, a mirror, and a layered LiTAO3 that has suitable dispersion characteristics to model a skin specimen. We present a practical and useful method to minimize the effect of dispersion through the interferometer and the specimen combined, as well as to quantify the results using two general metrics for resolution. Theoretical and associated experimental results show that, under the optimum solution, the maximum broadening of the point-spread function through a 1-mm-deep specimen is limited to 57% of its original rms width value (i.e., 8.1 μm optimal, 12.7 μm at maximum broadening) compared with approximately 110% when compensation is performed without the specimen taken into account. © 2005 Optical Society of America.
Publication Date
7-1-2005
Publication Title
Applied Optics
Volume
44
Issue
19
Number of Pages
4009-4022
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1364/AO.44.004009
Copyright Status
Unknown
Socpus ID
22144453873 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/22144453873
STARS Citation
Lee, Kye Sung; Ceyhun Akcay, A.; and Delemos, Tony, "Dispersion Control With A Fourier-Domain Optical Delay Line In A Fiber-Optic Imaging Interferometer" (2005). Scopus Export 2000s. 3890.
https://stars.library.ucf.edu/scopus2000/3890