Title
Linear Q-Difference Equations
Keywords
q-difference equations; q-type Liouville's formula; q-Wronskian
Abstract
We prove that a linear q-difference equation of order n has a fundamental set of n-linearly independent solutions. A q-type Wronskian is derived for the nth order case extending the results of Swarttouw-Meijer (1994) in the regular case. Fundamental systems of solutions are constructed for the n-th order linear q-difference equation with constant coefficients. A basic analog of the method of variation of parameters is established. © European Mathematical Society.
Publication Date
1-1-2007
Publication Title
Zeitschrift fur Analysis und ihre Anwendung
Volume
26
Issue
4
Number of Pages
481-494
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.4171/ZAA/1338
Copyright Status
Unknown
Socpus ID
37049020452 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/37049020452
STARS Citation
Abu Risha, M. H.; Annaby, M. H.; Ismail, M. E.H.; and Mansour, Z. S., "Linear Q-Difference Equations" (2007). Scopus Export 2000s. 7048.
https://stars.library.ucf.edu/scopus2000/7048