Title

Phosphate Ester Hydrolysis Of Biologically Relevant Molecules By Cerium Oxide Nanoparticles

Keywords

Cerium oxide nanoparticle; Dephosphorylation; Nanoceria; Phosphatase mimetic; Phosphate ester hydrolysis

Abstract

In an effort to characterize the interaction of cerium oxide nanoparticles (CNPs) in biological systems, we explored the reactivity of CNPs with the phosphate ester bonds of p-nitrophenylphosphate (pNPP), ATP, o-phospho-l-tyrosine, and DNA. The activity of the bond cleavage for pNPP at pH 7 is calculated to be 0.860 ± 0.010 nmol p-nitrophenol/min/μg CNPs. Interestingly, when CNPs bind to plasmid DNA, no cleavage products are detected. While cerium(IV) complexes generally exhibit the ability to break phosphorus-oxygen bonds, the reactions we report appear to be dependent on the availability of cerium(III) sites, not cerium(IV) sites. We investigated the dephosphorylation mechanism from the first principles and find the reaction proceeds through inversion of the phosphate group similar to an SN2 mechanism. The ability of CNPs to interact with phosphate ester bonds of biologically relevant molecules has important implications for their use as potential therapeutics. From the Clinical Editor: The ability of cerium oxide nanoparticles to interact with phosphate ester bonds of biologically relevant molecules has important implications for their use as potential therapeutics. This team of investigators explored the reactivity of these nanoparticles with the phosphate ester bonds of p-nitrophenylphosphate, ATP, o-phospho-L-tyrosine, and DNA. © 2010 Elsevier Inc.

Publication Date

12-1-2010

Publication Title

Nanomedicine: Nanotechnology, Biology, and Medicine

Volume

6

Issue

6

Number of Pages

738-744

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1016/j.nano.2010.05.004

Socpus ID

78649897879 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/78649897879

This document is currently not available here.

Share

COinS