Title
Design Of Asynchronous Circuits For High Soft Error Tolerance In Deep Submicrometer Cmos Circuits
Keywords
Asynchronous circuit; Null convention logic (NCL); Soft error
Abstract
As the devices are scaling down, the combinational logic will become susceptible to soft errors. The conventional soft error tolerant methods for soft errors on combinational logic do not provide enough high soft error tolerant capability with reasonably small performance penalty. This paper investigates the feasibility of designing quasi-delay insensitive (QDI) asynchronous circuits for high soft error tolerance. We analyze the behavior of null convention logic (NCL) circuits in the presence of particle strikes, and propose an asynchronous pipeline for soft-error correction and a novel technique to improve the robustness of threshold gates, which are basic components in NCL, against particle strikes by using Schmitt trigger circuit and resizing the feedback transistor. Experimental results show that the proposed threshold gates do not generate soft errors under the strike of a particle within a certain energy range if a proper transistor size is applied. The penalties, such as delay and power consumption, are also presented. © 2009 IEEE.
Publication Date
3-1-2010
Publication Title
IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Volume
18
Issue
3
Number of Pages
410-422
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1109/TVLSI.2008.2011554
Copyright Status
Unknown
Socpus ID
77649183496 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/77649183496
STARS Citation
Kuang, Weidong; Zhao, Peiyi; Yuan, J. S.; and DeMara, R. F., "Design Of Asynchronous Circuits For High Soft Error Tolerance In Deep Submicrometer Cmos Circuits" (2010). Scopus Export 2010-2014. 1436.
https://stars.library.ucf.edu/scopus2010/1436