Title

Potential Annealing Treatments For Tailoring The Starting Microstructure Of Low-Enriched U-Mo Dispersion Fuels To Optimize Performance During Irradiation

Abstract

Low-enriched uranium-molybdenum (U-Mo) alloy particles dispersed in aluminum alloy (e.g., dispersion fuels) are being developed for application in research and test reactors. To achieve the best performance of these fuels during irradiation, optimization of the starting microstructure may be required by utilizing a heat treatment that results in the formation of uniform, Si-rich interaction layers between the U-Mo particles and Al-Si matrix. These layers behave in a stable manner under certain irradiation conditions. To identify the optimum heat treatment for producing these kinds of layers in a dispersion fuel plate, a systematic annealing study has been performed using actual dispersion fuel samples, which were fabricated at relatively low temperatures to limit the growth of any interaction layers in the samples prior to controlled heat treatment. These samples had different Al matrices with varying Si contents and were annealed between 450 and 525°C for up to 4 h. The samples were then characterized using scanning electron microscopy (SEM) to examine the thickness, composition, and uniformity of the interaction layers. Image analysis was performed to quantify various attributes of the dispersion fuel microstructures that related to the development of the interaction layers. The most uniform layers were observed to form in fuel samples that had an Al matrix with at least 4 wt.% Si and a heat treatment temperature of at least 475°C. © 2011 Elsevier B.V. All rights reserved.

Publication Date

12-1-2011

Publication Title

Journal of Nuclear Materials

Volume

419

Issue

1-3

Number of Pages

226-234

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1016/j.jnucmat.2011.08.039

Socpus ID

80053492986 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/80053492986

This document is currently not available here.

Share

COinS