Title
Wiener'S Lemma For Infinite Matrices Ii
Keywords
Beurling algebra; Infinite matrix; Left inverse; Muckenhoupt A -weight q; Stability; Wiener's lemma
Abstract
In this paper, we introduce a class of infinite matrices related to the Beurling algebra of periodic functions, and we show that it is an inverse-closed subalgebra of B(lqw), the algebra of all bounded linear operators on the weighted sequence space(lqw), for any 1≤q≤∞ and any discrete Muckenhoupt Aq-weight w. © 2010 Springer Science+Business Media, LLC.
Publication Date
10-1-2011
Publication Title
Constructive Approximation
Volume
34
Issue
2
Number of Pages
209-235
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1007/s00365-010-9121-8
Copyright Status
Unknown
Socpus ID
79961027341 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/79961027341
STARS Citation
Sun, Qiyu, "Wiener'S Lemma For Infinite Matrices Ii" (2011). Scopus Export 2010-2014. 2923.
https://stars.library.ucf.edu/scopus2010/2923