Title
Multi-Objective Evolutionary Optimization Of Exemplar-Based Classifiers: A Pnn Test Case
Abstract
In this paper the major principles to effectively design a parameter-less, multi-objective evolutionary algorithm that optimizes a population of probabilistic neural network (PNN) classifier models are articulated; PNN is an example of an exemplar-based classifier. These design principles are extracted from experiences, discussed in this paper, which guided the creation of the parameter-less multi-objective evolutionary algorithm, named MO-EPNN (multi-objective evolutionary probabilistic neural network). Furthermore, these design principles are also corroborated by similar principles used for an earlier design of a parameter-less, multi-objective genetic algorithm used to optimize a population of ART (adaptive resonance theory) models, named MO-GART (multi-objective genetically optimized ART); the ART classifier model is another example of an exemplar-based classifier model. MO-EPNN's performance is compared to other popular classifier models, such as SVM (Support Vector Machines) and CART (Classification and Regression Trees), as well as to an alternate competitive method to genetically optimize the PNN. These comparisons indicate that MO-EPNN's performance (generalization on unseen data and size) compares favorably to the aforementioned classifier models and to the alternate genetically optimized PNN approach. MO-EPPN's good performance, and MO-GART's earlier reported good performance, both of whose design relies on the same principles, gives credence to these design principles, delineated in this paper. © 2011 IEEE.
Publication Date
10-24-2011
Publication Title
Proceedings of the International Joint Conference on Neural Networks
Number of Pages
1722-1731
Document Type
Article; Proceedings Paper
Personal Identifier
scopus
DOI Link
https://doi.org/10.1109/IJCNN.2011.6033432
Copyright Status
Unknown
Socpus ID
80054734442 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/80054734442
STARS Citation
Rubio, Talitha; Zhang, Tiantian; Georgiopoulos, Michael; and Kaylani, Assem, "Multi-Objective Evolutionary Optimization Of Exemplar-Based Classifiers: A Pnn Test Case" (2011). Scopus Export 2010-2014. 2994.
https://stars.library.ucf.edu/scopus2010/2994