Title
Classifying Web Videos Using A Global Video Descriptor
Keywords
Action recognition; Frequency spectrum; Spatio-temporal analysis; Video descriptors
Abstract
Computing descriptors for videos is a crucial task in computer vision. In this paper, we propose a global video descriptor for classification of videos. Our method, bypasses the detection of interest points, the extraction of local video descriptors and the quantization of descriptors into a code book; it represents each video sequence as a single feature vector. Our global descriptor is computed by applying a bank of 3-D spatio-temporal filters on the frequency spectrum of a video sequence; hence, it integrates the information about the motion and scene structure. We tested our approach on three datasets, KTH (Schuldt et al.; Proceedings of the 17th international conference on, pattern recognition (ICPR'04), vol. 3, pp. 32-36, 2004), UCF50 (http://vision.eecs.ucf. edu/datasetsActions.html) and HMDB51 (Kuehne et al.; HMDB: a large video database for human motion recognition, 2011), and obtained promising results which demonstrate the robustness and the discriminative power of our global video descriptor for classifying videos of various actions. In addition, the combination of our global descriptor and a local descriptor resulted in the highest classification accuracies on UCF50 and HMDB51 datasets. © 2012 Springer-Verlag.
Publication Date
10-1-2013
Publication Title
Machine Vision and Applications
Volume
24
Issue
7
Number of Pages
1473-1485
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1007/s00138-012-0449-x
Copyright Status
Unknown
Socpus ID
84885330892 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84885330892
STARS Citation
Solmaz, Berkan; Assari, Shayan Modiri; and Shah, Mubarak, "Classifying Web Videos Using A Global Video Descriptor" (2013). Scopus Export 2010-2014. 6310.
https://stars.library.ucf.edu/scopus2010/6310