Title

Understanding The Phase Equilibrium And Irradiation Effects In Fe-Zr Diffusion Couples

Abstract

We have studied the radiation effects in Fe-Zr diffusion couples, formed by thermal annealing of a mechanically bonded binary system at 850 °C for 15 days. After irradiation with 3.5 MeV Fe ions at 600 °C, a cross sectional specimen was prepared by using a focused-ion-beam-based lift out technique and was characterized using scanning/transmission electron microscopy, selected-area diffraction and X-ray energy dispersive spectroscopy analyses. Comparison studies were performed in localized regions within and beyond the ion projected range and the following observations were obtained: (1) the interaction layer consists of FeZr3, FeZr2, Fe2Zr, and Fe 23Zr6; (2) large Fe23Zr6 particles with smaller core particles of Zr-rich Fe2Zr are found within the α-Fe matrix; (3) Zr diffusion is significantly enhanced in the ion bombarded region, leading to the formation of an Fe-Zr compound; (4) grains located within the interaction layer are much smaller in the ion bombarded region and are associated with new crystal growth and nanocrystal formation; and (5) large α-Fe particles form on the surface of the Fe side, but the particles are limited to the region close to the interaction layer. These studies reveal the complexity of the interaction phase formation in an Fe-Zr binary system and the accelerated microstructural changes under irradiation. © 2012 Elsevier B.V. All rights reserved.

Publication Date

1-1-2013

Publication Title

Journal of Nuclear Materials

Volume

432

Issue

1-3

Number of Pages

205-211

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1016/j.jnucmat.2012.07.027

Socpus ID

84866874719 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84866874719

This document is currently not available here.

Share

COinS