Title

Luminescent Fluorene-Based Bis-Pyrazolyl Aniline Ligand For Aluminum Detection

Keywords

Aluminum; Chemosensor; Fluorescence; Probe; Ratiometric; Two-photon absorption

Abstract

The design, synthesis, and photophysical properties of a new fluorene-based fluorescent chemosensor, 4-((E)-2-(2-(benzo[d]thiazol-2-yl)-9,9-diethyl-9H- fluoren-7-yl)vinyl)-N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)benzenamine (AXF-Al), is described for the detection of Al3+. AXF-Al exhibited absorption at 382 nm and strong fluorescence emission at 542 nm (fluorescence quantum yield, Φ F, of 0.80). The capture of Al3+ by the pyrazolyl aniline receptor resulted in nominal change in the linear absorption (372 nm) but a large hypsochromic shift of 161 nm in the fluorescence spectrum (542 to 433 nm, Φ F = 0.88), from which Al3+ was detected both ratiometrically and colorimetrically. The addition of other metal ions, namely Mg2+, Ca2+, Mn2+, Fe 2+, Co2+, Ni2+, Cu2+, Zn 2+, Cd2+, Hg 2+ and Pb2+, produced only minimal changes in the optical properties of this probe. The emission band of this probe was also accessed by two-photon excitation in the near-IR, as two-photon absorption (2PA) is important for potential applications in two-photon fluorescence microscopy (2PFM) imaging. The 2PA cross section of the free fluorenyl ligand AXF-Al was 220 GM at 810 nm and 235 GM at 810 nm for the Al-ligand complex, practically useful properties for 2PFM. © 2013 Springer Science+Business Media New York.

Publication Date

1-1-2014

Publication Title

Journal of Fluorescence

Volume

24

Issue

1

Number of Pages

239-250

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1007/s10895-013-1291-x

Socpus ID

84894531537 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84894531537

This document is currently not available here.

Share

COinS