Keywords

Catalysts, Combustion, Porous materials, Thermoelectric materials

Abstract

The combustion of ultra-lean fuel to air mixtures provides an efficient way to convert the chemical energy of hydrocarbons into useful power. Conventional burning techniques of a mixture have defined flammability limits beyond which a flame cannot self-propagate due to heat losses. Matrix stabilized porous medium combustion is an advanced technique in which a solid porous matrix within the combustion chamber accumulates heat from the hot gaseous products and preheats incoming reactants. This heat recirculation extends the standard flammability limits and allows the burning of ultra-lean fuel mixtures, conserving energy resources, or the burning of gases of low calorific value, utilizing otherwise wasted resources. The heat generated by the porous burner can be harvested with thermoelectric devices for a reliable method of generating electricity for portable electronic devices by the burning of otherwise noncombustible mixtures. The design of the porous media burner, its assembly and testing are presented. Highly porous (~80% porosity) alumina foam was used as the central media and alumina honeycomb structure was used as an inlet for fuel and an outlet for products of the methane-air combustion. The upstream and downstream honeycomb structures were designed with pore sizes smaller than the flame quenching distance, preventing the flame from propagating outside of the central section. Experimental results include measurements from thermocouples distributed throughout the burner and on each side of the thermoelectric module along with associated current, voltage and power outputs. Measurements of the burner with catalytic coating were obtained for stoichiometric and lean mixtures and compared to the results obtained from the catalytically inert matrix, showing the effect on overall efficiency for the combustion of fuel-lean mixtures

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2011

Semester

Fall

Advisor

Orlovskaya, Nina

Degree

Master of Science in Aerospace Engineering (M.S.A.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Aerospace Engineering; Thermofluid Aerodynamic Systems Track

Format

application/pdf

Identifier

CFE0004142

URL

http://purl.fcla.edu/fcla/etd/CFE0004142

Language

English

Release Date

December 2011

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Share

COinS