Keywords

subpixel, image registration, sub-pixel, registration, maxillofacial ct data, ct

Abstract

In computational imaging, data acquired by sampling the same scene or object at different times or from different orientations result in images in different coordinate systems. Registration is a crucial step in order to be able to compare, integrate and fuse the data obtained from different measurements. Tomography is the method of imaging a single plane or slice of an object. A Computed Tomography (CT) scan, also known as a CAT scan (Computed Axial Tomography scan), is a Helical Tomography, which traditionally produces a 2D image of the structures in a thin section of the body. It uses X-ray, which is ionizing radiation. Although the actual dose is typically low, repeated scans should be limited. In dentistry, implant dentistry in specific, there is a need for 3D visualization of internal anatomy. The internal visualization is mainly based on CT scanning technologies. The most important technological advancement which dramatically enhanced the clinician's ability to diagnose, treat, and plan dental implants has been the CT scan. Advanced 3D modeling and visualization techniques permit highly refined and accurate assessment of the CT scan data. However, in addition to imperfections of the instrument and the imaging process, it is not uncommon to encounter other unwanted artifacts in the form of bright regions, flares and erroneous pixels due to dental bridges, metal braces, etc. Currently, removing and cleaning up the data from acquisition backscattering imperfections and unwanted artifacts is performed manually, which is as good as the experience level of the technician. On the other hand the process is error prone, since the editing process needs to be performed image by image. We address some of these issues by proposing novel registration methods and using stonecast models of patient's dental imprint as reference ground truth data. Stone-cast models were originally used by dentists to make complete or partial dentures. The CT scan of such stone-cast models can be used to automatically guide the cleaning of patients' CT scans from defects or unwanted artifacts, and also as an automatic segmentation system for the outliers of the CT scan data without use of stone-cast models. Segmented data is subsequently used to clean the data from artifacts using a new proposed 3D inpainting approach.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2006

Semester

Fall

Advisor

Foroosh, Hassan

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Degree Program

Computer Science

Format

application/pdf

Identifier

CFE0001443

URL

http://purl.fcla.edu/fcla/etd/CFE0001443

Language

English

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS