Keywords

Absorption, Boundary, Coherence, Dental lesions, Diffusive coatings, Inhomogeneous media, Monte carlo simulations, Scattering

Abstract

Light scattering-based techniques are being developed for non-invasive diagnostics of inhomogeneous media in various fields, such as medicine, biology, and material characterization. However, as most media of interest are highly scattering and have a complex structure, it is difficult to obtain a full analytical solution of the scattering problem without introducing approximations and assumptions about the properties of the system under consideration. Moreover, most of the previous studies deal with idealized scattering situations, rarely encountered in practice. This dissertation provides new analytical, numerical, and experimental solutions to describe subtle effects introduced by the properties of the light sources, and by the boundaries, absorption and morphology of the investigated media. A novel Monte Carlo simulation was developed to describe the statistics of partially coherent beams after propagation through inhomogeneous media. The Monte Carlo approach also enabled us to study the influence of the refractive index contrast on the diffusive processes, to discern between different effects of absorption in multiple scattering, and to support experimental results on inhomogeneous media with complex morphology. A detailed description of chromatic effects in scattering was used to develop new models that explain the spectral dependence of the detected signal in applications such as imaging and diffuse reflectance measurements. The quantitative and non-invasive characterization of inhomogeneous media with complex structures, such as porous membranes, diffusive coatings, and incipient lesions in natural teeth was then demonstrated.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2004

Semester

Spring

Advisor

Dogariu, Aristide

Degree

Doctor of Philosophy (Ph.D.)

College

College of Optics and Photonics

Department

Optics and Photonics

Degree Program

Optics

Format

application/pdf

Identifier

CFE0000048

URL

http://purl.fcla.edu/fcla/etd/CFE0000048

Language

English

Release Date

January 2007

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Optics; Optics -- Dissertations, Academic

Share

COinS