Keywords

VRM, HBBC, Small Signal Modeling, Transformer-Based Non-isolated Topologies

Abstract

The challenges imposed on Voltage Regulator Modules (VRM) become difficult to be achieved with the conventional multiphase buck converter commonly used on PC motherboards. For faster data transfer, a decrease in the output voltage is needed. This decrease causes small duty cycle that is accompanied by critical problems which impairs the efficiency. Therefore, these problems need to be addressed. Transformer-based non-isolated topologies are not new approaches to extend the duty cycle and avoid the associated drawbacks. High leakage, several added components and complicated driving and control schemes are some of the trade-offs to expand the duty cycle. The objective of this work is to present a new dc-dc buck-based topology, which extends the duty cycle with minimum drawbacks by adding two transformers that can be integrated to decrease the size and two switches with zero voltage switching (ZVS). Another issue addressed in this thesis is deriving a small signal model for a two-input two-phase buck converter as an introduction to a new evolving field of multi-input converters.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2006

Semester

Fall

Advisor

Batarseh, Issa

Degree

Master of Science in Electrical Engineering (M.S.E.E.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0001513

URL

http://purl.fcla.edu/fcla/etd/CFE0001513

Language

English

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS