Keywords

Natural energy, markov decision process, mdp, load shedding, energy storage, intermittency, expected cost

Abstract

In modern power systems, renewable energy has become an increasingly popular form of energy generation as a result of all the rules and regulations that are being implemented towards achieving clean energy worldwide. However, clean energy can have drawbacks in several forms. Wind energy, for example can introduce intermittency. In this thesis, we discuss a method to deal with this intermittency. In particular, by shedding some specific amount of load we can avoid a total system breakdown of the entire power plant. The load shedding method discussed in this thesis utilizes a Markov Decision Process with backward policy iteration. This is based on a probabilistic method that chooses the best load-shedding path that minimizes the expected total cost to ensure no power failure. We compare our results with two control policies, a load-balancing policy and a less-load shedding policy. It is shown that the proposed MDP policy outperforms the other control policies and achieves the minimum total expected cost.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2015

Semester

Spring

Advisor

Atia, George

Degree

Master of Science in Electrical Engineering (M.S.E.E.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0005635

URL

http://purl.fcla.edu/fcla/etd/CFE0005635

Language

English

Release Date

May 2015

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS