Keywords
Computational fluid dynamics, meshless, dns, rbf
Abstract
A meshless direct pressure-velocity coupling procedure is presented to perform Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) of turbulent incompressible flows in regular and irregular geometries. The proposed method is a combination of several efficient techniques found in different Computational Fluid Dynamic (CFD) procedures and it is a major improvement of the algorithm published in 2007 by this author. This new procedure has very low numerical diffusion and some preliminary calculations with 2D steady state flows show that viscous effects become negligible faster that ever predicted numerically. The fundamental idea of this proposal lays on several important inconsistencies found in three of the most popular techniques used in CFD, segregated procedures, streamline-vorticity formulation for 2D viscous flows and the fractional-step method, very popular in DNS/LES. The inconsistencies found become important in elliptic flows and they might lead to some wrong solutions if coarse grids are used. In all methods studied, the mathematical basement was found to be correct in most cases, but inconsistencies were found when writing the boundary conditions. In all methods analyzed, it was found that it is basically impossible to satisfy the exact set of boundary conditions and all formulations use a reduced set, valid for parabolic flows only. For example, for segregated methods, boundary condition of normal derivative for pressure zero is valid only in parabolic flows. Additionally, the complete proposal for mass balance correction is right exclusively for parabolic flows. In the streamline-vorticity formulation, the boundary conditions normally used for the streamline function, violates the no-slip condition for viscous flow. Finally, in the fractional-step method, the boundary condition for pseudo-velocity implies a zero normal derivative for pressure in the wall (correct in parabolic flows only) and, when the flows reaches steady state, the procedure does not guarantee mass balance. The proposed procedure is validated in two cases of 2D flow in steady state, backward-facing step and lid-driven cavity. Comparisons are performed with experiments and excellent agreement was obtained in the solutions that were free from numerical instabilities. A study on grid usage is done. It was found that if the discretized equations are written in terms of a local Reynolds number, a strong criterion can be developed to determine, in advance, the grid requirements for any fluid flow calculation. The 2D-DNS on parallel plates is presented to study the basic features present in the simulation of any turbulent flow. Calculations were performed on a short geometry, using a uniform and very fine grid to avoid any numerical instability. Inflow conditions were white noise and high frequency oscillations. Results suggest that, if no numerical instability is present, inflow conditions alone are not enough to sustain permanently the turbulent regime. Finally, the 2D-DNS on a backward-facing step is studied. Expansion ratios of 1.14 and 1.40 are used and calculations are performed in the transitional regime. Inflow conditions were white noise and high frequency oscillations. In general, good agreement is found on most variables when comparing with experimental data.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2015
Semester
Spring
Advisor
Kassab, Alain
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Mechanical Engineering
Format
application/pdf
Identifier
CFE0005733
URL
http://purl.fcla.edu/fcla/etd/CFE0005733
Language
English
Release Date
May 2015
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Vidal Urbina, Andres, "Meshless Direct Numerical Simulation of Turbulent Incompressible Flows" (2015). Electronic Theses and Dissertations. 1191.
https://stars.library.ucf.edu/etd/1191