Keywords
Thermal barrier coatings (tbc), calcium magnesium alumina silicate (cmas), synchrotron x ray diffraction, thermally grown oxide undulations, piezospectroscopy
Abstract
The durability of Thermal Barrier Coatings (TBCs) used on the turbine blades of aircraft and power generation engines has been known to be affected by sand particle ingression comprised of Calcium-Magnesium-Alumina-Silicate (CMAS). Previous studies have shown that these effects present themselves through variations in the thermomechanical and thermochemical properties of the coating. This study investigated the impact of CMAS ingression on the Yttria Stabilized Zirconia Topcoat (YSZ) and Thermally Grown Oxide (TGO) strain in sprayed Thermal Barrier Coating (TBC) samples of varying porosity with and without CMAS ingression. In-Situ Synchrotron X-ray Diffraction measurements were taken on the sample under thermal loading conditions from which the YSZ and TGO peaks were identified and biaxial strain calculations were determined at high temperature. Quantitative strain results are presented for the YSZ and TGO during a thermal cycle. In-plane strain results for YSZ near the TGO interface for a complete thermal cycle are presented, for a 6% porous superdense sample with CMAS infiltration. The outcomes from this study can be used to understand the role of CMAS on the strain tolerance of the TBC coating. It is well known that under engine operational conditions the development of the TGO layer, with large critical stresses, has been linked to failure of the coating. The growth of the TGO manifests as undulations in a series of peaks and troughs. Understanding the mechanics of the oxide layer at these locations provides significant information with respect to the failure mechanisms of the TBC coating. This study investigated the stress at the peak and trough of a TGO undulation for a cycled Dense Vertically Cracked (DVC) plasma sprayed TBC sample through photo-luminescence (PL) spectroscopy. High resolution nanoscale stress maps were taken nondestructively in the undulation of the TGO. Preliminary results from first line mapping of TGO peak and trough scan, at a resolution of 200 nm, have shown a non-uniform TGO stress variation. The results obtained from this study can be used to understand the stress variation in the peak and trough of a DVC sample's TGO undulation and how it contributes to the life of the TBC coating.
Graduation Date
2014
Semester
Summer
Advisor
Raghavan, Seetha
Degree
Master of Science in Mechanical Engineering (M.S.M.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Mechanical Engineering; Mechanical Systems
Format
application/pdf
Identifier
CFE0005712
URL
http://purl.fcla.edu/fcla/etd/CFE0005712
Language
English
Release Date
2-15-2015
Length of Campus-only Access
1 year
Access Status
Masters Thesis (Open Access)
STARS Citation
Siddiqui, Sanna, "Synchrotron X-Ray Diffraction and Piezospectroscopy used for the Investigation of Individual Mechanical Effects from Environmental Contaminants and Oxide Layer Undulations in Thermal Barrier Coatings" (2014). Electronic Theses and Dissertations. 1307.
https://stars.library.ucf.edu/etd/1307