Keywords

Body composition, sea lion, pinniped, glucose, bun, thyroxine, triiodothyronine, weaning, body condition, deuterium, ex situ

Abstract

Pinnipeds exhibit a wide range of lactation strategies that vary from just a few days to nearly three years in duration. Phocids have a relatively short, intense nursing period culminating with weaning after just a few days or weeks, while dependent otariids generally take several months of consuming a combined milk and solid food diet before being completely independent. The transition to nutritional independence can be particularly challenging for newly weaned pups, which must adjust to behavioral, physiological and nutritional changes as a milk diet is replaced with solid food. An interruption in energy resources during this formative stage could result in a prioritization away from growth, maintenance, or activity resulting in suboptimal development. Three groups of ex situ California sea lion (Zalophus californianus) pups were examined during the initial period of independence after they were weaned at approximately five, seven, and nine months of age. Absolute growth rates of pups were calculated and changes in body composition were estimated using blubber depth measurements and deuterium oxide dilution to determine if weaning age had an effect on subsequent pup development and growth. Blood urea nitrogen and blood glucose levels were observed for their response to changes in body condition, while thyroid hormone levels in the blood were examined as a possible nutritional stress indicator during the pup's transition to solid food. When compared to in situ pups, the 5 month old pups in the present study had significantly greater body mass (39.6 ± 1.6 kg, p < 0.01), axillary girth (85.3 ± 2.9 cm, p < 0.01), and axillary blubber depth (2.3 ± 0.1 cm, p < 0.01) compared to 5 month old in situ pups (26.6 ± 5.2 kg / 70.6 ± 5.34 cm / 1.5 ± 0.2 cm). Nine month old ex situ pups had significantly greater axillary blubber depth (3.7 ± 0.9 cm, p < 0.01) and total body lipid percentage (24.9 ± 4.7%, p= 0.01) than in situ pups (1.5 ± 0.2 cm / 17.1 ± 4.9%). Although all pups in the present study survived the transition to solid food, there were apparent differences in how the different age groups responded physiologically. The five month old pups began the switch to solid food with the lowest overall blubber depth (2.6 ± 0.9 cm) and experienced the greatest change in body mass (-8.5 ± 1.6 kg) and composition while taking the longest to begin physiological recovery (31.7 ± 1.2 d). In contrast, the 9 month old pups entered the transition with more energy reserves (24.9 ± 4.7% TBL), began consuming solid food sooner (16.3 ± 0.6 d), and were able to utilize reserves more efficiently to minimize loss and promote faster growth.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2014

Semester

Summer

Advisor

Worthy, Graham

Degree

Master of Science (M.S.)

College

College of Sciences

Department

Biology

Degree Program

Biology

Format

application/pdf

Identifier

CFE0005598

URL

http://purl.fcla.edu/fcla/etd/CFE0005598

Language

English

Release Date

February 2015

Length of Campus-only Access

1 year

Access Status

Masters Thesis (Open Access)

Included in

Biology Commons

Share

COinS