Keywords
Terrain correlation, line of sight, interoperability, roughness
Abstract
The uncountable number of tools for the creation of synthetic terrains poses as a challenge for simulation interoperability. The permutations of tools, elevation maps, and software settings leads to combinations of poorly correlated virtual terrains. An important issue in distributed simulations is the lack of line-of-sight correlation. For example, in military networked simulations, consistent intervisibility between simulated entities is crucial for a fair-fight, especially when simulations include direct-fire weapons. The literature review presented in the Chapter Two discusses a multitude of interoperability issues caused by discrepant terrain representations and rendering engines noncompliant to any standard image generation process. Furthermore, the literature review discusses past research that strived for measuring (or mitigating) the correlation issues between terrain databases. Based on previous research, this thesis proposes a methodology for analysis of line-of-sight correlation between a pair of terrain databases. All the mathematical theory involved in the methodology is discussed in the Chapter Three. In addition, this thesis proposes a new method for measuring the roughness of a visual terrain database. This method takes into account the 3D dispersion of the vectors normal to the polygons in the terrain's mesh. Because the vectors normal to the polygons are conveniently stored in most visual databases, the roughness calculation suggested here is fast and does not require sampling the terrain's elevation. In order to demonstrate the proposed method, twin terrain databases and a tool were created as part of this thesis. The goal of this tool is to extract data from the terrain databases for statistical analysis. The tool is open source and its source code is provided with this thesis. The Chapter Four includes an example of statistical analysis using an open source statistic software. The line-of-sight correlation analysis discussed here includes the terrain's geometry only (terrain's culture is not addressed). Human factors were not taken into consideration.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2015
Semester
Fall
Advisor
Goldiez, Brian
Degree
Master of Science (M.S.)
College
College of Engineering and Computer Science
Degree Program
Modeling and Simulation; Engineering
Format
application/pdf
Identifier
CFE0005985
URL
http://purl.fcla.edu/fcla/etd/CFE0005985
Language
English
Release Date
December 2015
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Oyama, Leonardo, "Assessment of Terrain Database Correlation Using Line-Of-Sight Measurements" (2015). Electronic Theses and Dissertations. 1395.
https://stars.library.ucf.edu/etd/1395