Keywords

Location uncertainty, uncertainty propagation, dense storage

Abstract

Effective space utilization is an important consideration in logistics systems and is especially important in dense storage environments. Dense storage systems provide high-space utilization; however, because not all items are immediately accessible, storage and retrieval operations often require shifting of other stored items in order to access the desired item, which results in item location uncertainty when asset tracking is insufficient. Given an initial certainty in item location, we use Markovian principles to quantify the growth of uncertainty as a function of retrieval requests and discover that the steady state probability distribution for any communicating class of storage locations approaches uniform. Using this result, an expected search time model is developed and applied to the systems analyzed. We also develop metrics that quantify and characterize uncertainty in item location to aid in understanding the nature of that uncertainty. By incorporating uncertainty into our logistics model and conducting numerical experiments, we gain valuable insights into the uncertainty problem such as the benefit of multiple item copies in reducing expected search time and the varied response to different retrieval policies in otherwise identical systems.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2015

Semester

Spring

Advisor

Pazour, Jennifer

Degree

Master of Science in Industrial Engineering (M.S.I.E.)

College

College of Engineering and Computer Science

Department

Industrial Engineering and Management Systems

Degree Program

Industrial Engineering

Format

application/pdf

Identifier

CFE0006052

URL

http://purl.fcla.edu/fcla/etd/CFE0006052

Language

English

Release Date

November 2015

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic

Share

COinS