Keywords
Magnetic fluid, thermomagnetic convection
Abstract
In this work we studied the convective heat transfer in a magnetic fluid in both zero and applied magnetic fields. The natural convection is observed in a quasi-one dimensional magnetic fluid in a horizontal temperature gradient. The horizontal non-homogeneous magnetic fields were applied across the sample cell either parallel or anti-parallel to the temperature gradient. The temperature profile was measured by eight thermocouples and temperature sensitive paint. The flow velocity field and streamlines were obtained by optical flow method. Calculated Nusselt numbers, Rayleigh number, and Grashof number show that the convective flow is the main heat transfer mechanism in applied fields in our geometry. It was found that when the field gradient is parallel with temperature gradient, the fields enhance the convective heat transfer while the fields inhibit it in anti-parallel configuration by analyzing the temperature difference across the sample, flow patterns, and perturbation Q field in applied fields. Magnetic Rayleigh number and magnetic Grashof number show that the thermomagnetic convections dominate in high magnetic fields. It is shown that the physical nature of the field effect is corresponding to the magnetic body force which is perpendicular to the gravity in our experiments. When the direction of the magnetic body force is same with temperature gradient in parallel configuration, the body force increases the convective heat transfer; while it has opposite effect in anti-parallel configuration. Our study will not only shed light on the fundamental mechanisms for thermomagnetic convection but also help to develop the potential field-controlled heat transfer devices.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2015
Semester
Fall
Advisor
Luo, Weili
Degree
Doctor of Philosophy (Ph.D.)
College
College of Sciences
Department
Physics
Degree Program
Physics
Format
application/pdf
Identifier
CFE0005957
URL
http://purl.fcla.edu/fcla/etd/CFE0005957
Language
English
Release Date
12-15-2016
Length of Campus-only Access
1 year
Access Status
Doctoral Dissertation (Open Access)
Subjects
Dissertations, Academic -- Sciences; Sciences -- Dissertations, Academic
STARS Citation
Huang, Jun, "Convective Heat Transfer in Quasi-one-dimensional Magnetic Fluid in Horizontal Field and Temperature Gradients" (2015). Electronic Theses and Dissertations. 1457.
https://stars.library.ucf.edu/etd/1457
Upcoming and Future Publications