Keywords
Boiling, porous media, wellbore, stefan, film boiling, openfoam
Abstract
Effective solvent extraction incorporating electromagnetic heating is a relatively new concept that relies on Radio Frequency heating and solvents to replace steam in current thermal processes for the purpose of extracting bitumen from oil rich sands. The work presented here will further the understanding of the near wellbore flow of this two phase system in order to better predict solvent vaporization dynamics and heat rates delivered to the pay zone. This numerical study details the aspects of phase change of immiscible, two component, liquid/vapor systems confined in porous media heated by electromagnetic radiation, approximated by a spatially dependent volumetric heat source term in the energy equation. The objective of this work is to utilize the numerical methodology presented herein to predict maximum solvent delivery rates to a heated isotropic porous matrix to avoid the over-saturation of the heated pay zone. The total liquid mass content and mean temperature in the domain are monitored to assess whether the liquid phase is fully vaporized prior to flowing across the numerical domain boundary. The distribution of the volumetric heat generation rate used to emulate the physics of electromagnetic heating in the domain decays away from the well bore. Some of the heat generated acts to superheat the already vaporized solvent away from the interface, requiring heat delivery rates that are many times greater than the energy required to turn the liquid solvent to vapor determined by an energy balance. Results of the parametric study from the pay zone simulations demonstrate the importance of the Darcian flow resistance forces added by the porous media to stabilize the flow being pulled away from the wellbore in the presence of gravity. For all cases involving an increase in solvent delivery rate with a constant heat rate, the permeability range required for full vaporization must decrease in order to balance the gravitational forces pulling the solvent from the heated region. For all conditions of permeability and solvent delivery rates, sufficiently increasing the heat rate results in complete vaporization of the liquid solvent. For the case of decreasing solvent delivery rate, a wider range of higher permeabilities for a given heat rate can be utilized while achieving full vaporization. A three dimensional surface outlining the transition from partially vaporized to fully vaporized regimes is constructed relating the solvent delivery rate, the permeability of the porous near wellbore zone and the heat rate supplied to the domain. For the range of permeabilities ~3000mD observed in these types of well bores, low solvent delivery rates and high heat rates must be utilized in order to achieve full vaporization.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2015
Semester
Fall
Advisor
Kumar, Ranganathan
Degree
Master of Science in Mechanical Engineering (M.S.M.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Mechanical Engineering; Thermo-Fluids
Format
application/pdf
Identifier
CFE0006018
URL
http://purl.fcla.edu/fcla/etd/CFE0006018
Language
English
Release Date
12-15-2016
Length of Campus-only Access
1 year
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Wilson, James, "Modeling Phase Change Heat Transfer of Liquid/vapor Systems in Free/porous Media" (2015). Electronic Theses and Dissertations. 1476.
https://stars.library.ucf.edu/etd/1476