Keywords
Breast cancer, Cerium oxide nanoparticles, Ionizing radiation, Nanoceria, Nanoparticles, Radiation induced cell death
Abstract
The ability of engineered cerium oxide nanoparticles to confer radioprotection was examined. Rat astrocytes were treated with cerium oxide nanoparticles to a final concentration of 10 nanomolar, irradiated with a single 10 Gy dose of ionizing radiation and cell death was evaluated by propidium iodine uptake at 24 and 48 hours after radiation insult. Treatment of rat astrocytes with nanoceria resulted in an approximate 3-fold decrease in radiation induced death. These results suggest that the nanoceria are conferring protection from radiation induced cell death. Further experiments with human cells were conducted. Human normal and tumor cells (MCF-7 and CRL8798) were treated with the same dosage of cerium oxide nanoparticles, irradiated and evaluated for cell survival. Treatment of normal cells (MCF-7) conferred nearly 99% protection from radiation-induced cell death while the same concentration of nanoceria showed almost no protection in tumor cells (CRL8798). TUNEL analysis results of similarly treated cells demonstrated that nanoceria reduced radiation-induced cell death by 3-fold in normal breast cells but not in MCF-7 tumor cell lines when cultured under the same conditions. We concluded that cerium oxide nanoparticles confer radioprotection in a normal human breast line (CRL 8798) but not in a human breast tumor line (MCF-7). It is hoped that the outcome of this study will guide future endeavors toward a better elucidation of the molecular pathways involved in the protection of cells with nanoceria against radiation-induced cell death, as well as the minimization of the bystander effect in radiation therapy.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2006
Semester
Spring
Advisor
Kolattukudy, Pappachan
Degree
Master of Science (M.S.)
College
Burnett College of Biomedical Sciences
Department
Molecular Biology and Microbiology
Degree Program
Molecular and Microbiology
Format
application/pdf
Identifier
CFE0001048
URL
http://purl.fcla.edu/fcla/etd/CFE0001048
Language
English
Release Date
April 2013
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Subjects
Biomedical Sciences -- Dissertations, Academic, Dissertations, Academic -- Biomedical Sciences
STARS Citation
Colon, Jimmie, "Use Of Cerium Oxide Nanoparticles For Protection Against Radiation-induced Cell Death" (2006). Electronic Theses and Dissertations. 1499.
https://stars.library.ucf.edu/etd/1499