Keywords
Damping (Mechanics), Nanocomposites (Materials)
Abstract
Composite structures for aerospace and wind turbine applications are subjected to high acoustic and vibrational loading and exhibit very high amplitude displacements and thus premature failure. Materials with high damping or absorbing properties are crucially important to extend the life of structures. Traditional damping treatments are based on the combinations of viscoelastic, elastomeric, magnetic, and piezoelectric materials. In this work, the use of carbon nanofibers (CNFs) in the form of interconnected self-supportive paper as reinforcement can significantly improve damping performance. The interfacial friction is the primary source of energy dissipation in CNF paper based nanocomposites. The approach entailed making CNF paper by filtration of well-dispersed nanofibers under controlled processing conditions. The CNF paper was integrated into composite laminates using modified liquid composite molding processes including Resin Transfer Molding (RTM) and Vacuum Assisted Resin Transfer Molding (VARTM). The rheological and curing behaviors of the CNF-modified polymer resin were characterized with Viscometry and Differential Scanning Calorimetry (DSC). The process analysis in mold filling and pressure distribution was conducted using Control Volume Finite Element Method (CVFEM) in an attempt to optimize the quality of multifunctional nanocomposites. The mold filling simulation was validated with flow visualization in a transparent mold. Several tests were performed to study the damping properties of the fabricated composites including Dynamic Mechanical Analysis (DMA) and piezoceramic patch based vibration tests. It was found that the damping performance was significantly enhanced with the incorporation of carbon nanofibers into the composite structures.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2009
Semester
Spring
Advisor
Gou, Jihua
Degree
Master of Science (M.S.)
College
College of Engineering and Computer Science
Department
Mechanical, Materials, and Aerospace Engineering
Degree Program
Mechanical, Materials and Aerospace Engineering
Format
application/pdf
Identifier
CFE0002839
URL
http://purl.fcla.edu/fcla/etd/CFE0002839
Language
English
Release Date
September 2009
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Algozzini, Lee, "Multifunctional Nanocomposites For High Damping Performance" (2009). Electronic Theses and Dissertations. 1506.
https://stars.library.ucf.edu/etd/1506