Keywords

Damping (Mechanics), Nanocomposites (Materials)

Abstract

Composite structures for aerospace and wind turbine applications are subjected to high acoustic and vibrational loading and exhibit very high amplitude displacements and thus premature failure. Materials with high damping or absorbing properties are crucially important to extend the life of structures. Traditional damping treatments are based on the combinations of viscoelastic, elastomeric, magnetic, and piezoelectric materials. In this work, the use of carbon nanofibers (CNFs) in the form of interconnected self-supportive paper as reinforcement can significantly improve damping performance. The interfacial friction is the primary source of energy dissipation in CNF paper based nanocomposites. The approach entailed making CNF paper by filtration of well-dispersed nanofibers under controlled processing conditions. The CNF paper was integrated into composite laminates using modified liquid composite molding processes including Resin Transfer Molding (RTM) and Vacuum Assisted Resin Transfer Molding (VARTM). The rheological and curing behaviors of the CNF-modified polymer resin were characterized with Viscometry and Differential Scanning Calorimetry (DSC). The process analysis in mold filling and pressure distribution was conducted using Control Volume Finite Element Method (CVFEM) in an attempt to optimize the quality of multifunctional nanocomposites. The mold filling simulation was validated with flow visualization in a transparent mold. Several tests were performed to study the damping properties of the fabricated composites including Dynamic Mechanical Analysis (DMA) and piezoceramic patch based vibration tests. It was found that the damping performance was significantly enhanced with the incorporation of carbon nanofibers into the composite structures.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2009

Semester

Spring

Advisor

Gou, Jihua

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Mechanical, Materials, and Aerospace Engineering

Degree Program

Mechanical, Materials and Aerospace Engineering

Format

application/pdf

Identifier

CFE0002839

URL

http://purl.fcla.edu/fcla/etd/CFE0002839

Language

English

Release Date

September 2009

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Included in

Engineering Commons

Share

COinS