Keywords
Dielectrophoresis, Filters and filtration, Microelectrodes, Particles, Taylor vortices, Water -- Pollution
Abstract
As the world population approaches seven billion, a greater strain is put on the resources necessary to sustain life. One of the most basic and essential resources is water and while two thirds of the earth is covered by water, the majority is either salt water (oceans and seas) or it is too contaminated to drink. The purpose of this project is to develop a portable device capable of testing whether a specific source of water (i.e. lake, river, well…) is potable. There are numerous filtration techniques that can remove contaminants and make even the dirtiest water clean enough for consumption but they are for the most part, very time consuming and immobile processes. The device is not a means of water purification but rather focuses on determining the content of the water and whether it is safe. Particles within the water are separated and trapped using a combination of a Taylor Couette fluid flow system and Dielectrophoretic electrodes. This paper explores Taylor Couette flow in a large gap and low aspect ratio system through theory and experimentation with early stage prototypes. Different inner cylinder radii, 2.12cm, 1.665cm and 1.075cm, were tested at different speeds approaching, at and passing the critical Taylor number, 3825, 4713 and 6923 respectively for each cylinder. Dielectrophoretic (DEP) electrodes were designed, fabricated, coated and tested using latex beads to determine the method of integrating them within the fluid flow system. Taylor Couette theory, in terms of the formation of vortices within the large gap, small aspect ratio system, was not validated during testing. The flow pattern generated was more akin to a chaotic circular Couette flow but still served to move the particles toward the outer wall. Fully integrated tests were run with limited success. Recommendations were made to pursue both circular Couette flow as the basis for iv particle separation and dimensional changes in the setup to allow for the formation of Taylor vortices by increasing the radius ratio but still allowing for a larger volume of fluid.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2010
Semester
Spring
Advisor
Chen, Quanfang
Degree
Master of Science in Mechanical Engineering (M.S.M.E.)
College
College of Engineering and Computer Science
Department
Mechanical, Materials, and Aerospace Engineering
Degree Program
Miniature Engineering Systems
Format
application/pdf
Identifier
CFE0003129
URL
http://purl.fcla.edu/fcla/etd/CFE0003129
Language
English
Release Date
October 2013
Length of Campus-only Access
3 years
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Bock, Christopher Paul, "Particle Separation Through Taylor-couette Flow And Dielectrophoretic Trapping" (2010). Electronic Theses and Dissertations. 1520.
https://stars.library.ucf.edu/etd/1520