Keywords

Aluminum, Solar cells, Sputtering (Physics), Zinc oxide thin films

Abstract

Growing demand for clean source of energy in the recent years has increased the manufacture of solar cells for converting sun energy directly into electricity. Research has been carried out around the world to make a cheaper and more efficient solar cell technology by employing new architectural designs and developing new materials to serve as light absorbers and charge carriers. Aluminum doped Zinc Oxide thin film, a Transparent conductive Oxides (TCO) is used as a window material in the solar cell these days. Its increased stability in the reduced ambient, less expensive and more abundance make it popular among the other TCO’s. It is the aim of this work to obtain a significantly low resistive ZnO:Al thin film with good transparency. Detailed electrical and materials studies is carried out on the film in order to expand knowledge and understanding. RF magnetron sputtering has been carried out at various substrate temperatures using argon, oxygen and hydrogen gases with various ratios to deposit this polycrystalline films on thermally grown SiO2 and glass wafer. The composition of the films has been determined by Xray Photoelectron Spectroscopy and the identification of phases present have been made using X-ray diffraction experiment. Surface imaging of the film and roughness calculations are carried out using Scanning Electron Microscopy and Atomic Force Microscopy respectively. Determination of resistivity using 4-Probe technique and transparency using UV spectrophotometer were carried out as a part of electrical and optical characterization on the obtained thin film.The deposited thin films were later annealed in vacuum at various high temperatures and the change in material and electrical properties were analyzed.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2010

Semester

Spring

Advisor

Sundaram, Kalpathy B.

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Format

application/pdf

Identifier

CFE0003142

URL

http://purl.fcla.edu/fcla/etd/CFE0003142

Language

English

Release Date

May 2010

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Share

COinS