Keywords
Biomedical materials, Cells, Proteins, Tissues
Abstract
Bioengineering is the application of engineering principles to address challenges in the fields of biology and medicine. Biomaterials play a major role in bioengineering. This work employs a three level approach to study the various interactions of biomaterials with proteins, cells and tissue in vitro. In the first study, we qualitatively and quantitatively analyzed the process of protein adsorption of two enzymes to two different surface chemistries, which are commonly used in the field. In the second study, we attempted to engineer a tissue construct to build a biocompatible interface between a titanium substrate and human skin. In the third study, an in-vitro model of the motoneuron-muscle part of the stretch reflex arc circuit was developed. Using a novel silicon based micro-cantilever device, muscle contraction dynamics were measured and we have shown the presence of a functional neuro-muscular junction (NMJ). These studies have potential applications in the rational design of biomaterials used for biosensors and other implantable devices, in the development of a functional prosthesis and as a high-throughput drug-screening platform to study various neuro-muscular disorders.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2010
Semester
Summer
Advisor
Hickman, James
Degree
Master of Science (M.S.)
College
College of Engineering and Computer Science
Department
Electrical Engineering and Computer Science
Format
application/pdf
Identifier
CFE0003347
URL
http://purl.fcla.edu/fcla/etd/CFE0003347
Language
English
Release Date
August 2010
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Bhalkikar, Abhijeet, "Study Of The Interactions Of Proteins, Cells And Tissue With Biomaterials" (2010). Electronic Theses and Dissertations. 1555.
https://stars.library.ucf.edu/etd/1555