Keywords

Carports -- Design and construction, DC to DC converters, Hybrid electric vehicles, Power electronics, Solar vehicles

Abstract

Recent trends in the energy sector have provided opportunities in the research of alternative energy sources and optimization of systems that harness these energy sources. With the rising cost of fossil fuel and rising concern about detrimental effects that fossil fuel consumption has on the environment, electric vehicles are becoming more prevalent. A study put out in 2009 gives a prediction that in the year 2025, 20% of new vehicles will be PHEVs.[1] As energy providers become more concerned about a growing population and diminishing energy source, they are looking into alternative energy sources such as wind and solar power. Much of this is done on a large scale with vast amounts of land used for solar or wind farms to provide energy to the grid. However, as population grows, requirements of the physical components of a power transmission system will become more demanding and the need for remote micro-grids will become more prevalent. Micro-grids are essentially smaller subsystems of a distribution system that provide power to a confined group of loads, or households. Using the idea of micro grid technology, a solar charging station can be used as a source to provide energy for the immediate surroundings, or also to electric vehicles that are demanding energy from the panels. Solar charging stations are becoming very popular, however the need for improvement and optimization of these systems is needed. This thesis will present a method for redesigning the overall architecture of the controls and power electronics of typical carports so that efficiency, reliability and modularity are achieved. Specifically, a typical carport, as seen commonly today, has been built on the University of Central Florida campus in Orlando. This iii carport was designed in such a way that shifting from conventional charging methods is made easy while preserving the fundamental requirements of a practical solar carport.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2010

Semester

Fall

Advisor

Batarseh, Issa

Degree

Master of Science in Electrical Engineering (M.S.E.E.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Format

application/pdf

Identifier

CFE0003490

URL

http://purl.fcla.edu/fcla/etd/CFE0003490

Language

English

Release Date

December 2010

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Share

COinS