Keywords
Gases -- Liquefaction, Liquid oxygen, Liquid oxygen -- Density
Abstract
Rocketry employs cryogenic refrigeration to increase the density of propellants, such as oxygen, and stores the propellant as a liquid. In addition to propellant liquefaction, cryogenic refrigeration can also conserve propellant and provide propellant subcooling and densification. Previous studies analyzed vapor conditioning of a cryogenic propellant, which occurred by either a heat exchanger positioned in the vapor or by using the vapor as the working fluid in a refrigeration cycle. This study analyzes the refrigeration effects of a heat exchanger located beneath the vapor-liquid interface of liquid oxygen. This study predicts the mass liquefaction rate and heat transfer coefficient for liquid oxygen using two different models, a Kinetic Theory Model and a Cold Plate Model, and compares both models to experimental data. The Kinetic Theory Model overestimated the liquefaction rate and heat transfer coefficient by five to six orders of magnitude, while the Cold Plate Model underestimated the liquefaction rate and heat transfer coefficient by one to two orders of magnitude. This study also suggested a model to predict the densification rate of liquid oxygen, while the system is maintained at constant pressure. The densification rate model is based on transient heat conduction analysis and provides reasonable results when compared to experimental data.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2010
Semester
Fall
Advisor
Chow, Louis
Degree
Master of Science in Mechanical Engineering (M.S.M.E.)
College
College of Engineering and Computer Science
Department
Mechanical, Materials, and Aerospace Engineering
Degree Program
Mechanical Engineering
Format
application/pdf
Identifier
CFE0003429
URL
http://purl.fcla.edu/fcla/etd/CFE0003429
Language
English
Release Date
December 2010
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Partridge, Jonathan Koert, "Experimental Studies Of Liquefaction And Densification Of Liquid Oxygen" (2010). Electronic Theses and Dissertations. 1656.
https://stars.library.ucf.edu/etd/1656