Keywords

Bile acids, Nanotubes, Self assembly (Chemistry)

Abstract

The self-assembly of chiral amphiphilic molecules in aqueous solutions is of particular interest because the chirality of individual molecules is often expressed in their supermolecular structures. Self-assembled tubes made of chiral amphiphilic molecules represent useful supramolecular architectures which hold promise as controlled release vehicles for drug delivery, encapsulates for functional molecules, and nanoreactors for chemical reactions. Lithocholic acid (LCA) is a secondary bile acid with the concentration being identical to that of cholesterol in the hepatic bile and gallbladder. It has a rigid, nearly planar hydrophobic steroid nucleus, with four hydrogen atoms and one hydroxyl group directed toward the concave side, and the convex side with three methyl groups. The ionic head with a carboxyl group is linked to the steroid nucleus through a short alkyl chain. In this thesis work, I study the self-assembly behavior of LCA at the liquid-solid interface, in confined spaces, and bulk solution. We find that the initially formed LCA vesicles further assemble into fractal tubes on glass slides by diffusion-limited aggregation and pronglike tubes by the capillary flow generated in an evaporating vesicle solution confined by two parallel glass slides. While in bulk solution, the LCA vesicles linearly aggregate and fuse into spiral tubes at pH 12.0. The spiral tubes can transition into a straight shape as the pH of solution is reduced to 7.4. The shape transition of the tubes is reversible as the pH of solution is adjusted back to 12.0. The pH-switchable shape transition suggests that the self-assembled LCA tubes can act as a supramolecular chemical spring. Finally, the LCA tubes are endowed with optical functionality by embedding cadmium sulfide nanopaticles (CdS) in the tube walls by the co-assembling synthesis of cadmium sulfide iv (CdS) nanoparticles with lithocholic acid (LCA) molecules. The fluorescent composite tubes can undergo pH switchable spiral/straight, which are a promising system for a variety of materials and biological applications.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2010

Semester

Fall

Advisor

Fang, Jiyu

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Mechanical, Materials, and Aerospace Engineering

Degree Program

Materials Science and Engineering

Format

application/pdf

Identifier

CFE0003479

URL

http://purl.fcla.edu/fcla/etd/CFE0003479

Language

English

Release Date

December 2010

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Share

COinS