Keywords

metacognition, knowledge organization, knowledge integration, instructional efficiency, learner-generated elaboration, computer-based training

Abstract

This study explored the effectiveness of embedding a guided, learner-generated instructional strategy (query method), designed to support learners' cognitive and metacognitive processes, within the context of a computer-based complex task training environment (i.e., principles of flight in the aviation domain). The queries were presented as "stop and think" exercises in an open-ended question format that asked learners to generate either simple (low-level elaboration) or complex (high-level elaboration) sentences from a list of key training concepts. Results consistently highlighted the benefit of presenting participants with low-level elaboration queries, as compared to the no-query or high-level elaboration queries. In terms of post-training cognitive outcomes, participants presented with the low-level elaboration queries exhibited significantly more accurate knowledge organization (indicated by similarity to an expert model), better acquisition of perceptual knowledge, and superior performance on integrative knowledge assessment involving the integration and application of task-relevant concepts. Consistent with previous studies, no significant differences in performance were found on basic factual knowledge assessment. Presentation of the low-level elaboration queries also significantly improved the training program's instructional efficiency, that is, greater performance was achieved with less perceived cognitive effort. In terms of post-training metacognitive outcomes, participants presented with the low-level elaboration queries exhibited significantly greater metacomprehension accuracy and more effective metacognitive self-regulation during training. Contrary to predictions, incorporating the high-level elaboration queries into the training consistently failed, with only a few exceptions, to produce significantly better post-training outcomes than the no-query or the low-level elaboration query training conditions. The results of this study are discussed in terms of the theoretical implications for garnering a better understanding of the cognitive and metacognitive factors underlying the learning process. Practical implications for training design are presented within the context of cognitive load theory. Specifically, the increased cognitive processing of the training material associated with the high-level elaboration queries may have imposed too great a cognitive load on participants during training, minimizing the cognitive resources available for achieving a deeper, integrative understanding of the training concepts and hindering successful performance on the cognitive measures. The discussion also highlights the need for a multi-faceted approach to training evaluation.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2004

Semester

Fall

Advisor

Bowers, Clint

Degree

Doctor of Philosophy (Ph.D.)

College

College of Arts and Sciences

Department

Psychology

Degree Program

Psychology

Format

application/pdf

Identifier

CFE0000265

URL

http://purl.fcla.edu/fcla/etd/CFE0000265

Language

English

Release Date

December 2004

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Included in

Psychology Commons

Share

COinS