Keywords

Diesel motor -- Alternative fuels, Environmental impact analysis, Greenhouse gases, Refuse collection, Refuse collection vehicles, Refuse collection vehicles -- Motors (Diesel) -- Exhaust gas

Abstract

The growing municipal solid waste generation rates have necessitated more efficient, optimized waste collection facilities. The majority of the US collection fleet is composed of diesel-fueled vehicles which contribute significant atmospheric emissions including greenhouse gases. In order to reduce emissions to the atmosphere, more collection agencies are investigating alternative fuel technologies such as natural gas, biofuels (bio-gas and bio-diesel), and hybrid electric technology. This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. This study will evaluate the use of alternative fuels by waste collection vehicles. Lifecycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Moreover, the energy consumption and the tail-pipe emissions of dieselfueled waste collection vehicles were estimated using MOVES 2010a software. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. Finally, the selection of fuel type by the waste collection industry requires consideration of environmental, security, financial, operational, and safety issues. In this study, a qualitative comparison between alternative fuels was performed; a multifactorial assessment of these factors was conducted taking into account the opinion of the waste collection industry of the importance of each factor. Liquid-petroleum fuels have higher life-cycle emissions compared to natural gas; however landfill natural gas has the lowest life-cycle emissions compared to all other fuel categories. Compressed natural gas waste collection vehicles have the lowest fuel cost per collection vehicle mile travel compared to other fuel categories. Moreover, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; iv this generates more emissions than constant speed driving. Finally, the multifactorial assessment indicates that natural gas and landfill gas have better environmental, economical, and energy security performance than current liquid-petroleum fuels.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2011

Semester

Fall

Advisor

Reinhart, Debra

Degree

Master of Science in Environmental Engineering (M.S.Env.E.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Environmental Engineering

Format

application/pdf

Identifier

CFE0004133

URL

http://purl.fcla.edu/fcla/etd/CFE0004133

Language

English

Release Date

December 2011

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Share

COinS