Abstract

This thesis presents Harmony Oriented Architecture: a novel architectural paradigm that applies the principles of Harmony Oriented Programming to the architecture of scalable and evolvable distributed systems. It is motivated by research on Ultra Large Scale systems that has revealed inherent limitations in human ability to design large-scale software systems that can only be overcome through radical alternatives to traditional object-oriented software engineering practice that simplifies the construction of highly scalable and evolvable system. HOP eschews encapsulation and information hiding, the core principles of objectoriented design, in favor of exposure and information sharing through a spatial abstraction. This helps to avoid the brittle interface dependencies that impede the evolution of object-oriented software. HOA extends these concepts to distributed systems resulting in an architecture in which application components are represented by objects in a spatial database and executed in strict isolation using an embedded application server. Application components store their state entirely in the database and interact solely by diffusing data into a space for proximate components to observe. This architecture provides a high degree of decoupling, isolation, and state exposure allowing highly scalable and evolvable applications to be built. A proof-of-concept prototype of a non-distributed HOA middleware platform supporting JavaScript application components is implemented and evaluated. Results show remarkably good performance considering that little effort was made to optimize the implementation.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2011

Semester

Fall

Advisor

Hua, Kien A.

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Degree Program

Computer Science

Format

application/pdf

Identifier

CFE0004480

URL

http://purl.fcla.edu/fcla/etd/CFE0004480

Language

English

Release Date

June 2015

Length of Campus-only Access

3 years

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Share

COinS