Keywords

Bragg gratings, Laser beams, Lasers

Abstract

High power lasers with diffraction limited beam quality are desired for many applications in defense and manufacturing. A lot of applications require laser beams at the 100 kW power level along with divergence close to the diffraction limit. The figure of merit for a beam used in such applications should be radiance which determines the laser power delivered to a remote target. One of the primary limiting factors is thermal distortion of a laser beam caused by excessive heat generated in the laser media. Combination of multiple laser beams is usually considered as a method to mitigate these limitations. Spectral beam combining (SBC) by volume Bragg gratings (VBGs) is a very promising method for the future of high radiance lasers that needs to achieve 100 kW-level power. This work is dedicated to development of methods to increase spectral density of combined beams keeping their divergence at an acceptably low level. A new figure of merit for a beam combining system is proposed, the Beam Combining Factor (BCF), which makes it possible to distinguish the quality of the individual beams from the quality of beam combining. Also presented is a method of including the effect of beam divergence and spectral bandwidth on the performance of VBGs, as well as a method to optimize VBG parameters in terms of thickness and refractive index modulation for an arbitrary number of beams. A novel thermal tuning technique and apparatus is presented with which the SBC system can be tuned for peak efficiency from low to high power without the need for mechanical re- iv alignment. Finally, a thermally tuned SBC system with five beams, with a spectral separation between beams of 0.25 nm at a total power of 685 W is presented. The results show the highest power spectral density and highest spectral radiance of any SBC system to date. Recent demonstrations in SBC by multiplexed VBGs and the use of super Gaussian beams for beam quality improvement are also discussed.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2011

Semester

Fall

Advisor

Zeldovich, Boris

Degree

Doctor of Philosophy (Ph.D.)

College

College of Optics and Photonics

Department

Optics and Photonics

Degree Program

Optics

Format

application/pdf

Identifier

CFE0004104

URL

http://purl.fcla.edu/fcla/etd/CFE0004104

Language

English

Release Date

December 2012

Length of Campus-only Access

1 year

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Optics and Photonics, Optics and Photonics -- Dissertations, Academic

Share

COinS