Keywords
SICK laser mapping robot
Abstract
There are several industries exploring solutions to quickly and accurately digitize unexplored indoor environments, into useable three-dimensional databases. Unfortunately, there are inherent challenges to the indoor mapping process such as, scanning limitations and environment complexity, which require a specific application of tools to map an environment precisely with low cost and high speed. This thesis successfully demonstrates the design and implementation of a low cost mobile robotic computing platform with laser scanner, for quickly mapping with high resolution, urban and/or indoor environments using a gyro-enhanced orientation sensor and selectable levels of detail. In addition, a low cost alternative solution to three-dimensional laser scanning is presented, via a standard two-dimensional SICK proximity laser scanner mounted to a custom servo motor mount and controlled by external microcontroller. A software system to control the robot is presented, which incorporates and adheres to widely accepted software engineering guidelines and principles. An analysis of the overall system, including robot specifications, system capabilities, and justification for certain design decisions, are described in detail. Results of various open source software algorithms, as it applies to scan data and image data, are also compared; including evaluation of data correlation and registration techniques. In addition, laser scanner mapping tests, specifications, and capabilities are presented and analyzed. A sample design for converting the final scanned point cloud data to a database is presented and assessed. The results suggest the overall project yields a relatively high degree of accuracy and lower cost over most other existing systems surveyed, as well as, the potential for application of the system in other fields. The results also discuss thoughts for possible future research work.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2004
Semester
Fall
Advisor
Schiavone, Guy
Degree
Master of Science in Computer Engineering (M.S.Cp.E.)
College
College of Engineering and Computer Science
Department
Electrical and Computer Engineering
Degree Program
Computer Engineering
Format
application/pdf
Identifier
CFE0000313
URL
http://purl.fcla.edu/fcla/etd/CFE0000313
Language
English
Release Date
January 2007
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
McCoig, Kenneth, "A Mobile Robotic Computing Platform For Three-dimensional Indoor Mappi" (2004). Electronic Theses and Dissertations. 213.
https://stars.library.ucf.edu/etd/213