Keywords
Synchronous communication system, radar, receiver, transmitter, interrogation system, fpga control system
Abstract
During past two decades a variety of SAW based wireless sensors were invented and research is still in progress. As different frequencies, varied bandwidths, coding techniques and constantly changing post processing algorithms are being implemented, there is a constant need for a universal and adjustable synchronous communication system able to interrogate new generations of SAW sensors. This thesis presents the design of a multiple FPGA based communication system with an operational frequency range of 450MHz-2.2GHz capable of producing user programmed modulated signal. The synchronous receiver is designed to have interchangeable chip, replacement of which would allow adjustment of the receiver’s bandwidth. Within this paper the performance of the system is only evaluated at 915MHz centered 20MHz bandwidth region. An OFC temperature sensor was interrogated. Post-processing algorithms, measurement results, and proposals for the future use of the system are presented. Detailed overview of the structure and performance of every functional block along with design considerations are analyzed. Previously designed Matlab based software was adapted for post processing of the received signal. New software with simplified GUI was designed for programming of the desired signal.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2012
Semester
Spring
Advisor
Malocha, Donald C.
Degree
Master of Science in Electrical Engineering (M.S.E.E.)
College
College of Engineering and Computer Science
Department
Electrical Engineering and Computing
Degree Program
Electrical Engineering
Format
application/pdf
Identifier
CFE0004270
URL
http://purl.fcla.edu/fcla/etd/CFE0004270
Language
English
Release Date
May 2012
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Troshin, Maxim, "Synchronous Communication System For Saw Sensors Interrogation" (2012). Electronic Theses and Dissertations. 2163.
https://stars.library.ucf.edu/etd/2163