Keywords
Nanocomposite, lithium ion batteries, pdc
Abstract
The properties of C/SiCN nanocomposites synthesized by thermal decomposition of polymer precursors were studied in this work. The novel polymer-to-ceramic process enables us to tailor the ceramic structure in atomic level by designing the starting chemicals and pyrolysis procedures. It is of both fundamental and practical significance to investigate the properties and structures relationship of the nanocomposites. In this work, we explored their application potential in using as anode of lithium-ion secondary batteries. The structure and structural evolution of C/SiCN nanocomposite were investigated by using XRD, FTIR, SEM, TEM, Solid state NMR and Raman spectroscopy. The results revealed the nanocomposites consisted of amorphous SiCxNx-4 matrix and carbon nanoclusters distributed within it. The size of the carbon was measured by Raman spectroscopy, varied with starting chemicals and pyrolysis temperature. The electronic properties of the C/SiCN nanocomposite were studied by measuring the IV curves and a.c. impedance. The d.c. conductivity increased with carbon content and pyrolysis temperatures. The impedance spectra and fitted equivalent circuit results confirmed the existence of two phases in the nanocomposite. The possibility of using C/SiCN as anode in lithium-ion secondary batteries was investigated by electrochemical measurements, namely cyclic voltammetry, galvanostatic cyclic test and electrochemical impedance spectroscopy. The galvanostatic measurements showed that the nanocomposite with 26% of carbon nanoclusters exhibited a specific capacity of 480 mAh/g, iv which is 30% higher than that of commercial graphite anode. The high capacity of the nanocomposites is attributed to the formation of a novel structure around C/SiCN interface. The excellent electrochemical properties, together with the simple, low-cost processing, make the nanocomposites very promising for Li-ion battery applications
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2012
Semester
Spring
Advisor
An, Linan
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Materials Science Engineering
Degree Program
Materials Science and Engineering
Format
application/pdf
Identifier
CFE0004194
URL
http://purl.fcla.edu/fcla/etd/CFE0004194
Language
English
Release Date
May 2013
Length of Campus-only Access
1 year
Access Status
Doctoral Dissertation (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Li, Cheng, "Synthesis And Properties Of Self-assembled C/sicn Nanocomposite Derived From Polymer Precursors" (2012). Electronic Theses and Dissertations. 2458.
https://stars.library.ucf.edu/etd/2458