Keywords
NIBP, Non Invasive Blood Pressure, Motion Artifacts, Comb Filter
Abstract
Modern Automatic Blood Pressure Measurement Techniques are based on measuring the cuff pressure and on sensing the pulsatile amplitude variations. These measurements are very sensitive to motion of the patient or the surroundings where the patient is. The slightest unexpected movements could offset the readings of the automatic Blood Pressure meter by a large amount or render the readings totally meaningless. Every effort must be taken to avoid subjecting the body of the patient or the patient's surroundings to motion for obtaining a reliable reading. But there are situations in which we need Blood Pressure Measurements with the patient or his surroundings in motion; for instance in an ambulance while a patient is being transported to a hospital. In this thesis, we present a technique to reduce the effect of motion artifact from Blood Pressure measurements. We digitize the blood pressure waveform and use Digital Signal Processing Techniques to process the corrupted waveform. We use the differences in frequency spectra of the Blood Pressure signal and motion artifact noise to remove the motion artifact noise. The motion artifact noise spectrum is not very well defined, since it may consist of many different frequency components depending on the kind of motion. The Blood Pressure signal is more or less a periodic signal. That translates to periodicity in the frequency domain. Hence, we designed a digital filter that could take advantage of the periodic nature of the Blood Pressure Signal waveform. The filter is shaped like a comb with periodic peaks around the signal frequency components. Further processing of the filtered signal: baseline restoration and level shifting help us to further reduce the noise corruption.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2004
Semester
Fall
Advisor
Weeks, Arthur
Degree
Master of Science (M.S.)
College
College of Engineering and Computer Science
Department
Electrical and Computer Engineering
Degree Program
Electrical Engineering
Format
application/pdf
Identifier
CFE0000324
URL
http://purl.fcla.edu/fcla/etd/CFE0000324
Language
English
Release Date
January 2014
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Thakkar, Paresh, "The Removal Of Motion Artifacts From Non-invasive Blood Pressure Measurements" (2004). Electronic Theses and Dissertations. 248.
https://stars.library.ucf.edu/etd/248