Keywords

Localized surface plasmon resonance, gold nanoparticles, array, thermal

Abstract

Localized surface plasmon resonance (LSPR) is induced in metal nanoparticles by resonance between incident photons and conduction electrons in nanoparticles. For noble metal nanoparticles, LSPR can lead to strong absorbance of ultraviolet-violet light. Although it is well known that LSPR depends on the size and shape of nanoparticles, the inter-particle spacing, the dielectric properties of metal and the surrounding medium, the temperature dependence of LSPR is not well understood. By thermally annealing gold nanoparticle arrays formed by nanosphere lithography, a shift of LSPR peak upon heating has been shown. The thermal characteristics of the plasmonic nanoparticles have been further used to detect chemicals such as explosive and mercury vapors, which allow direct visual observation of the presence of mercury vapor, as well as thermal desorption measurements

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2012

Semester

Summer

Advisor

Su, Ming

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Materials Science Engineering

Degree Program

Materials Science and Engineering

Format

application/pdf

Identifier

CFE0004454

URL

http://purl.fcla.edu/fcla/etd/CFE0004454

Language

English

Release Date

August 2013

Length of Campus-only Access

1 year

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Share

COinS