Keywords
Query language, privacy framework, video database system, real time, object recognition, object tracking, video stream
Abstract
With heightened security concerns across the globe and the increasing need to monitor, preserve and protect infrastructure and public spaces to ensure proper operation, quality assurance and safety, numerous video cameras have been deployed. Accordingly, they also need to be monitored effectively and efficiently. However, relying on human operators to constantly monitor all the video streams is not scalable or cost effective. Humans can become subjective, fatigued, even exhibit bias and it is difficult to maintain high levels of vigilance when capturing, searching and recognizing events that occur infrequently or in isolation. These limitations are addressed in the Live Video Database Management System (LVDBMS), a framework for managing and processing live motion imagery data. It enables rapid development of video surveillance software much like traditional database applications are developed today. Such developed video stream processing applications and ad hoc queries are able to "reuse" advanced image processing techniques that have been developed. This results in lower software development and maintenance costs. Furthermore, the LVDBMS can be intensively tested to ensure consistent quality across all associated video database applications. Its intrinsic privacy framework facilitates a formalized approach to the specification and enforcement of verifiable privacy policies. This is an important step towards enabling a general privacy certification for video surveillance systems by leveraging a standardized privacy specification language. With the potential to impact many important fields ranging from security and assembly line monitoring to wildlife studies and the environment, the broader impact of this work is clear. The privacy framework protects the general public from abusive use of surveillance technology; iii success in addressing the "trust" issue will enable many new surveillance-related applications. Although this research focuses on video surveillance, the proposed framework has the potential to support many video-based analytical applications.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2013
Semester
Spring
Advisor
Hua, Kien A.
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Computer Science
Degree Program
Computer Science
Format
application/pdf
Identifier
CFE0004648
URL
http://purl.fcla.edu/fcla/etd/CFE0004648
Language
English
Release Date
May 2013
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Aved, Alexander, "Scene Understanding For Real Time Processing Of Queries Over Big Data Streaming Video" (2013). Electronic Theses and Dissertations. 2511.
https://stars.library.ucf.edu/etd/2511