Keywords

Nitrogenase, femo co biosynthesis, nifb co, nifb, nitrogen fixation

Abstract

The Mo-nitrogenase complex is composed of two components, Fe-protein and MoFe-protein. This complex is able to catalyze the reduction of N2 through the MgATP dependent transfer of electrons from the Fe-protein Fe4S4 cluster to the MoFe-protein P-cluster and, subsequently, to the iron-molybdenum cofactor (FeMoco). FeMo-co is a Fe7S9MoC-(R)-homocitrate cluster and has two biosynthetic precursors, NifB-co and L-cluster, of unknown structure and composition. The biosynthesis of FeMo-co is an enigmatic process that minimally requires NifB, NifEN, Fe-protein, MoO4 2- , (R)-homocitrate and S-adenolsylmethionine. A means to isolate the NifB enzyme for characterization has been developed through use of a GST-fusion tag. Double recombination of A. vinelandii strains with a constructed vector has yielded strains capable of nif promoter regulated expression of GST-NifB. Extracts of strains containing GST-NifB were shown to activate the Monitrogenase complex in biochemical complementation assays. Mass spectroscopy was then used to verify successful isolation of GST-NifB by GSH-Sepharose affinity purification. The number of NifB-co ligand binding sites and ligand types were examined by EXAFS analysis of samples containing selenol and thiol ligands. A Fe6S9C model for NifB-co was optimized to best fit the EXAFS data, where a 2-fold discrepancy in binding sites implied by thiol or selenol only ligand samples suggests Fe-(μ2S)-Fe binding in the absence of Se. Samples containing heterogeneous ligand types indicated that NifX bound NifB-co ligates to four cysteine residues and one molecule of DTT.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2013

Semester

Spring

Advisor

Igarashi, Robert

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Chemistry

Degree Program

Chemistry

Format

application/pdf

Identifier

CFE0004682

URL

http://purl.fcla.edu/fcla/etd/CFE0004682

Language

English

Release Date

May 2013

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Sciences, Sciences -- Dissertations, Academic,

Included in

Chemistry Commons

Share

COinS