Keywords
CPT, Landfill, Shear Strength of MSW, Slope Stability, Biosolids
Abstract
Land filling provides a major, safe, and economical disposal route for biosolids and sludges. With an expanding world, the demand for larger and higher capacity landfills is rapidly increasing. Proper analysis and design on such fills have pushed the boundaries of geotechnical engineering practice, in terms of proper identification and assessment of strength and deformation characteristics of waste materials. The engineering properties of Municipal Solid Waste (MSW) with co-disposal of biosolids and sludges with regards to moisture characteristics and geotechnical stability are of utmost importance. Significant changes in the composition and characteristics of landfill may take place with the addition of sludges and biosolids. In particular, the stability of waste slopes needs to be investigated, which involves the evaluation of the strength properties of the mixture of the waste and biosolids. This thesis deals with impact of the addition of biosolids on the geotechnical properties of class I landfill as determined from field investigations. The geotechnical properties are evaluated using an in-situ deep exploration test, called the Cone Penetration Test (CPT). CPT provides a continuous log of subsurface material properties using two measuring mechanisms, namely, tip resistance and side friction. The areas receiving biosolids are compared with areas without, to evaluate the effect of landfilling of biosolids. The required geotechnical shear strength parameters (angle of internal friction and cohesion) of MSW and biosolids mixture are determined by correlation with CPT results similar to the procedure followed in evaluating soil properties. The shear strength parameters obtained from the CPT data are then used to study the stability of different slope configurations of the landfill. The slope stability analysis is conducted on the various landfill models using the computer software SLOPE/W. This software was designed for soils but was found to be suitable for modeling landfills, as the waste is assumed to act similar to a cohesionless soil. Based on the field investigations, the angle of internal friction was found to be about 29° and the determination of any cohesion was not possible. It was concluded that the most suitable practical solution to adding biosolids into the landfill was in the form of trenches. From the slope stability study, it was found that the factor of safety reduces significantly with the introduction of biosolids due to a reduction in shear strength and increase in the overall moisture content. From a parametric study, the stability of a 1:2 side slope with an angle of friction lower than about 20° was found to be less than the safe limit of 1.5. In addition, the factors of safety for landfills with trenches extending close to the edges of the slopes were also found to be unsafe and this situation needs to be avoided in practice.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2004
Semester
Fall
Advisor
Chopra, Manoj
Degree
Master of Science in Civil Engineering (M.S.C.E.)
College
College of Engineering and Computer Science
Department
Civil and Environmental Engineering
Degree Program
Civil Engineering
Format
application/pdf
Identifier
CFE0000301
URL
http://purl.fcla.edu/fcla/etd/CFE0000301
Language
English
Release Date
December 2004
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Vajirkar, Mrutyunjay, "Slope Stability Analysis Of Class I Landfills With Co Disposal Of Bios" (2004). Electronic Theses and Dissertations. 254.
https://stars.library.ucf.edu/etd/254