Keywords
Fiber reinforced polymers, utility pole, frp, impact damage, polyurethane, repair
Abstract
Previous studies have demonstrated that the behavior of fiber reinforced polymers (FRPs) bonded to metallic utility poles are governed by the following failure modes; yielding of the metallic substrate, FRP tensile rupture, FRP compressive buckling, and debonding of FRP from the substrate. Therefore, an in situ method can be devised for the repair of utility poles, light poles, and mast arms that returns the poles to their original service strength. This thesis investigates the effect of damage due to vehicular impact on metallic poles, and the effectiveness of externally-bonded FRP repair systems in restoring their capacity. Damage is simulated experimentally by rapid, localized load application to pole sections, creating dents ranging in depth from 5 to 45% of the outer diameter. Four FRP composite repair systems were selected for characterization and investigation due to their mechanical properties, ability to balance the system failure modes, and installation effectiveness. Bending tests are conducted on dented utility poles, both unrepaired and repaired. Nonlinear finite element models of dented and repaired pole bending behavior are developed in MSC.Marc. These models show good agreement with experimental results, and can be used to predict behavior of full-scale repair system. A relationship between dent depth and reduced pole capacity is developed, and FRP repair system recommendations are presented
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2013
Semester
Spring
Advisor
Mackie, Kevin
Degree
Master of Science (M.S.)
College
College of Engineering and Computer Science
Department
Civil, Environmental, and Construction Engineering
Degree Program
Civil Engineering; Structures and Geotechnical Engineering
Format
application/pdf
Identifier
CFE0004697
URL
http://purl.fcla.edu/fcla/etd/CFE0004697
Language
English
Release Date
May 2013
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic,
STARS Citation
Johnson, Cara, "Characterization Of Impact Damage And Fiber Reinforced Polymer Repair Systems For Metallic Utility Poles" (2013). Electronic Theses and Dissertations. 2545.
https://stars.library.ucf.edu/etd/2545